Load Diagrams
Program 0170 Rubber Buffers
Calculation Example

1. Calculation of energy per buffer: \(W = \frac{1}{2} m \times v^2 \)
2. Readout compression length from the diagram
3. Readout final load of the buffer from the table
4. Result and verification
 - \(s < 0.5 \times h \)
 - \(F < F_{\text{max}} \) of the crane structure
 - \(a = v^2/2s < a_{\text{max}} \)

\(W = \) Energy Absorption [J]
\(s = \) Travel [mm]
\(F = \) Force [kN]
\(v = \) Velocity [m/s]
\(m = \) Mass [kg]
\(h = \) Buffer height
\(a = \) deceleration

• Max. deflection = 50%
• Valid for solid-rubber buffers with \(h = 0.8 \times d_1 \)
Energy-Travel Ø 125

Force-Travel Ø 125
Energy-Travel Ø 200

Force-Travel Ø 200
Conductix-Wampfler has just one critical mission: To provide you with energy and data transmission systems that will keep your operations up and running 24/7/365.

To contact your nearest sales office, please refer to:
www.conductix.com/contact-search